
Huron Net Works, Inc.

DN-CMEM

DeviceNet Console Master Emulator

User’s Guide

Revision Date Description

1.1 5/2/03 Original

1.2 5/14/03 Add offline, fault, claim, and disown. Add section on log
files and macros

1.3 7/8/03
Change name on this document to DN-CMEM to reflect
current catalog number. Original program name and
internal error message tag remain “CDMEM”

1.4 3/26/04 Add dupmac and monitor keywords

1.5 6/8/05 Add ASCII keyword. Add I/O fragmentation for POLL
request. Add I/O fragmentation for CAN literal notation.

1.6 5/7/06 Add keyword READ, WRITE, DIR, CD, and TYPE to
support directory navigation, and small file editing.

 Table of Contnts

2505002 Revision 1.6 7 May 2006

1. GETTING STARTED ..1
1.1. General Description..1
1.2. Invocation...1
1.3. Screen Layout..2
1.4. Keyboard..2
1.5. Program Input ..3
1.6. Fragmented Messages ..4

1.6.1. Fragmented Explicit Messages...4
1.6.2. Fragmented I/O Messages ..5
1.6.3. Fragmented Other Messages..5

1.7. Explicit Message Types ...5
1.8. Message Body Format...5
1.9. Log Files ..5

2. Commands ..7
2.1. help ...7
2.2. load ...7
2.3. save ..8
2.4. log ...8
2.5. play..9
2.6. replay..10
2.7. delay ...10
2.8. allocate ...11
2.9. setepr..12
2.10. poll...12
2.11. mcpoll ...13
2.12. strobe..13
2.13. release..13
2.14. slaveid ..14
2.15. masterid ...14
2.16. multicastid ..15
2.17. baudrate ...15
2.18. fragackid ..15
2.19. fragokid ..16
2.20. class..16
2.21. instance..17
2.22. get...17
2.23. set ...18
2.24. chain ...18
2.25. mask...19
2.26. match..19
2.27. reset..21
2.28. cosack ..21
2.29. open..21
2.30. close ...22
2.31. bodyformat...22

2505002 Revision 1.6 7 May 2006

2

2.32. ucmm..23
2.33. offline ..23
2.34. fault..23
2.35. claim ...23
2.36. disown ..24
2.37. dupmac...24
2.38. monitor..25
2.39. ascii ..25

3. Function Keys ..28
3.1. Terminal Emulators, Displays, and Keyboards..28
3.2. Use of Function Keys..28
3.3. Defining a Function Key...29
3.4. Function Key Editor...29

4. Application Hints ...31
4.1. Allocating Connections...31
4.2. Simple Scanner...31
4.3. Nested Play Files ..32
4.4. Keyboard Escape ...34

Appendix A.1 ...35
Appendix A.2 ...36
APPENDIX B...38

2505002 Revision 1.6 7 May 2006

1

1. GETTING STARTED

1.1. General Description

DeviceNet Console Master Emulator (DN-CMEM) is derived from the DN-MEM
software that runs in conjunction with the DN-PC1 and DN-PC2 cards. These cards
are now obsolete along with the ISA bus. Console Master emulator is a general-
purpose tool used in the development and debugging of DeviceNet nodes. It can
be used for other types of CAN networks because it does not directly implement the
DeviceNet Protocol stack. It does implement certain DeviceNet specific features
with respect to acknowledgement and fragmentation. DN-CMEM runs on the
DeviceGate module and interfaces with several popular terminal emulators. It has
the ability to monitor the DeviceNet bus for traffic. DN-CMEM displays incoming
messages, with time stamps, on the screen, and can log them to a file for later
analysis.

DN-CMEM provides a general-purpose message construction feature, which can
be used to send specific messages to a DeviceNet node under development.
Certain DeviceNet operations from the predefined Master/Slave Connection Set,
the UCMM, and the Offline Connection Set have defined keywords so that
memorizing the exact format of common messages is not required. Sequences of
messages and commands may be assigned to any of the twelve function keys and
manually executed when the function key is depressed. Automated test suites can
be placed in script files and executed with a single command. The script file may
contain a replay command (See §2.6) to allow continuous testing. The script file
may also contain a play (See §2.5), or a chain (See §2.24) command, which
allows multiple files to be treated as a single file.

In the original design, all required files were supposed to reside in the root directory
of the DeviceGate’s solid state disk drive. There is a limitation of 32 files per folder
on this simulated disk drive. Directory navigation on the Device Gate is
accomplished with the dir (See §) command, and the cd (See §) command. In
addition to directory navigation, it is now possible to edit small files directly within
DN-CMEM. Small files can be read into a single key buffer with the read (See)
command, and written from a key buffer with a write (See) command.

1.2. Invocation

Console Master Emulator runs on the DeviceGate Module and communicates with a
terminal emulator. It is invoked by typing its name – cdmem – in response to the

2505002 Revision 1.6 7 May 2006

2

command prompt “A:\>” There are two optional parameters, which can be specified
on the command line. These are baudrate and terminal port. They may be
specified in any order since only the values are significant. If a parameter is not
specified on the command line it takes a default value. The default for baudrate is
125. The default terminal port is zero, which corresponds to the EXT port on the
DeviceGate. This port is accessible via the external DB-9 Male Connector. Valid
terminal ports are 0,1,2, which correspond to ports EXT, COM, and TELNET on the
DeviceGate. The COM port does not have a connector installed on the board.
Baudrate can be conveniently specified as a command line parameter, or from the
keyboard via the baudrate command (See §2.17), or in the autoexec.scr script
file (See §2.5). Valid baudrates are 125, 250, and 500.

After being loaded, Console Master Emulator will look for a file named
autoexec.scr. If the file exists, the file will automatically be played (See §2.5).

To exit Console Master Emulator use ^X. Hold the control key (Ctrl) and press the
letter X. Alternatively depressing the Esc key twice, written as ESC-ESC, will also
exit the program.

1.3. Screen Layout

Unlike the original Master Emulator, the split screen layout is no longer practical with
an ANSI Terminal Emulator so some adjustments have been made. If the terminal
emulator understands ANSI escape sequences, the main screen background color
is cyan. Transmitted frames, keyboard input, and command results are in bold
yellow. Received frames are shown in bold white. Informational text is in bold
green.

All messages are shown on the main screen in hexadecimal form with the CAN
identifier enclosed in square brackets -- [] -- and the CAN data field enclosed in
angle brackets -- < > --. This notation is called CAN literal notation, which replaces
the term “square bracket/angle bracket notation”. Packet counters and time stamps
are shown at the beginning of a line enclosed in colons. Descriptions of transmitted
and received messages are shown at the end of the line.

1.4. Keyboard

In the original version of Master Emulator (DMEM) keyboard input came directly
from the console functions on the PC. Now it must come through a terminal
emulator. Different terminal emulators have a multitude of methods for encoding
and using the Function Keys (F1 through F12) and the Editing Keys (Insert, Delete,
Home, End, Page Up, and Page Down). Console Master Emulator defines a set of
Control Keys and Escape Sequences that it understands. Some terminal emulators

2505002 Revision 1.6 7 May 2006

3

can be configured to produce these sequences when certain keys are depressed. If
you use a rudimentary terminal emulator it may take some practice to use two or
three key sequences for the Function Keys. Two observations may help. The
reverse tick (`) used to create the Shift/Control/Alt function key sequences is right
under the ESC Key. The sequences for the individual keys correspond to the order
of the keys on a standard typewriter keyboard with one exception. Alt-F12 uses the
backslash as the third character of the sequence, which is actually up one row from
the rest of the Alt-Function Keys.

1.5. Program Input

Input to the program comes from one of three sources. These sources are:

• Keyboard Input
• Function Key Buffer(s)
• Script File(s)

Keyboard Input comes from the keyboard and is processed one character at a time
into messages, commands or comments. Function Key Buffers are sequences of
messages, commands and parameters, or comments, on multiple lines, that are
saved and recalled with a single Function Key (F1 through F12). The maximum
length of a Function Key Buffer is 640 characters. Longer sequences of messages,
commands and parameters, and comments are contained in a Script File (*.scr).
Console Master Emulator uses two other types of files: the Function Key Definition
(*.key) file, and the Log (*.log) file. These files and their usage is discussed in
load(§2.2), save(§2.3), and log(§2.4).

The input from any of the three sources consists of messages, commands, or
comments. Commands consist of a keyword (§2) and an optional list of parameters
separated by one or more spaces. A comment is any line beginning with a pound
sign (#), a colon (:), a space (" "), a percent (%), or a newline (\n). This convention
allows all of the files created by Console Master Emulator to be used as script files.
This includes key definition (*.key) files and log (*.log) files. Old key files can be
adapted to the new convention by inserting a newline(‘\n’) after the “%D”.

DeviceNet messages, in CAN literal notation, consist of an identifier and a
message body, and are represented with the following syntax:

[identifier] <xx xx xx>

The eleven (11) bit CAN identifier, in hexadecimal notation, is enclosed in square
brackets. The message body consists of one or more bytes, in hexadecimal
notation, enclosed in angle brackets. Optional spaces between message bytes
improve readability. For example a message with the identifier 0x5E4 and two data
bytes (0x55 and 0xAA) would be written as follows:

2505002 Revision 1.6 7 May 2006

4

[5E4]<55 AA>

This CAN literal notation is designed to allow embedded End of Line characters so
that a fragmented messages may actually cover several lines without the use of line
continuation characters. This may lead to some confusion if the number of opening
and closing brackets does not match. In these circumstances it may look as though
the program is not responding. The bell character, or Control-G (^G) implements a
forceful end of line abort condition with respect to unmatched brackets. After
entering the bell character you can start over with a new command.

Without the split screen there are cases where input from one of the input sources
will be overlapped with output to the screen. To avoid the ungainly appearance of
this overlapping, Console Master Emulator implements a modified form of the
XON/XOFF protocol. The normal default mode is “XON”. In this mode input
characters are echoed to the screen as they are entered from the keyboard or read
from a buffer or a file. The alternate mode is “XOFF”. In this mode input characters
are echoed to the screen only when there is a complete line. Switching between
these two modes is accomplished with the Control-Q (^Q) for XON and the Control-
S (^S) for XOFF. When Console Master Emulator is in the XOFF mode you have to
tolerate the lack of echoing as you type. If this is a serious problem then you have to
put up with overlapping of keyboard input and screen output.

1.6. Fragmented Messages

1.6.1. Fragmented Explicit Messages

An Explicit Message with more than eight bytes specified in the message body will
be sent out as a fragmented explicit message. The value of the identifier is used
for this determination. All messages in Group 3 and the Explicit Request and
Explicit Response in Group 2 are treated this way. The first and second bytes of the
message should conform to the DeviceNet fragmentation protocol. The first byte
should have the fragmentation bit set and the second byte should be 0 to
indicate the first fragment. In all other cases when using this form of message
construction, there is no error checking or other protocol related activity on the part
of Console Master Emulator.

When receiving fragmented explicit responses; it is necessary to generate fragment
acknowledgements. There are several commands that help control this process
including fragackid (§2.18), fragokid(§2.19), claim(§2.35), and disown(§2.36).

2505002 Revision 1.6 7 May 2006

5

1.6.2. Fragmented I/O Messages

An I/O Message with more than eight bytes specified in the message body will be
sent out as a fragmented I/O message. The value of the identifier is used for this
determination. All messages in Group 1 and the Multicast Poll Request and the Poll
Reques in Group 2 are treated this way. I/O fragments are not acknowledged and
there is no need have a place holder for the fragmentation bytes.

1.6.3. Fragmented Other Messages

Any other type of message in Group 2 or Group 4 is assumed to be unfragmented
and will be truncated and sent if the message body exceeds eight bytes.

1.7. Explicit Message Types

An Explicit Request Message can be constructed in two different ways. The first
method uses the Predefined Master/Slave Connection Set. These explicit request
messages have an Identifier in Group 2; Destination MAC ID, and Message Id four
(4). The message header in the data field contains the Source MAC ID, which is the
value of the Master MAC ID. The second method uses a presumed Group 3 or
Group 1 identifier supposedly allocated by a UCMM (Unconnected Message
Manager). This identifier will have the Master MAC ID in it. The Slave MAC ID is
placed in the message header byte in the data field. Switching between these two
construction methods is accomplished with the ucmm (§2.32) command.

1.8. Message Body Format

Message Body Format is related to the sizes of Class Identifier and Instance
Identifier, used in the construction of explicit messages. The DeviceNet Adaptation
of CIP Specification defines four choices for how to handle this value. See Vol.
3,Edition 1.0, p. 2-27. The command bodyformat (§2.31) with a numeric argument
is used to select one of the four choices. The default value, zero(0), is to construct
Explicit Request Messages with an eight (8)-bit Class Identifier, and an eight (8)-bit
Instance Identifier.

1.9. Log Files

Console Master Emulator has the ability to create log files on the DeviceGate’s
Flash Disk. Sadly the maximum size of this Flash Disk is only 256K bytes, or about
the same size as an original low density floppy disk. Room on the Flash Disk is
needed for programs and their data files, so we recommend that log files be
created and maintained by the terminal emulator on the PC platform. If this is not

2505002 Revision 1.6 7 May 2006

6

practical for some reason, an alternate approach is to periodically transfer the log
files on the DeviceGate, using FTP, to files on the PC platform supporting the
terminal emulator.

2505002 Revision 1.6 7 May 2006

7

2. COMMANDS

Chapter Preview

2.1 help 2.16 multicastid 2.31 bodyformat
2.2 load 2.17 baudrate 2.32 ucmm
2.3 save 2.18 fragackid 2.33 offline
2.4 log 2.19 fragokid 2.34 fault
2.5 play 2.20 class 2.35 claim
2.6 replay 2.21 instance 2.36 disown
2.7 delay 2.22 get 2.37 dupmac
2.8 allocate 2.23 set 2.38 monitor
2.9 setepr 2.24 chain 2.39 ascii
2.10 poll 2.25 mask 2.40 dir
2.11 mcpoll 2.26 match 2.41 cd
2.12 strobe 2.27 reset 2.42 type
2.13 release 2.28 cosack 2.43 read
2.14 slaveid 2.29 open 2.44 write
2.15 masterid 2.30 close

2.1. help

The help command causes a list of commands to be displayed. The list is
displayed on one page. If your terminal emulator is not big enough you may have to
scroll backwards to see the entire screen. The terminal emulator should allow a
setting for the number of lines in a window.

2.2. load

The load command, with a filename, causes a file of previously saved Function Key
Definitions, to be loaded into the function key buffers. For example to load key
definitions from the file "startup.key" enter the following:

load startup.key Then press Enter.

2505002 Revision 1.6 7 May 2006

8

If the filename parameter to the load command does not have a filename extension
then the extension “.key” will be appended to the name. Console Master Emulator
will try to open the file, load the key buffers and print a message saying how many
key buffers it loaded. If the file cannot be found a message will be displayed.

To obtain a directory of function key definition files, type “load”, without a filename,
then, press enter. The text will consist of a list of *.key files from the directory in
which Master Emulator is currently being run. In addition to the *.key files, any
folders at the current level are displayed in a separate list.

2.3. save

The save command is the opposite of the load command. It saves the current
definitions for the Function Keys into a file. For example to save the Function Key
Definitions to a file called "newfuncs.key" type the following:

save newfuncs.key Then press Enter.

As with the load command, if no extension is provided for the filename parameter
then an extension of “.key” will be appended. Master Emulator will open the file and
save all the Function Key Definitions and display a message saying how many
definitions it saved. Note that the definition files are saved in ASCII text format and
may be viewed and manipulated with standard word processors and editors. The
syntax is trivial. In addition to the text there are three separator tags which are
described in the table below:

Separator Tag Meaning

%L Text up to the next % is a key buffer label
%D Text up to the next % is key buffer data
%E End of File

To obtain a directory of function key definition files, type “save”, without a filename,
then, press enter. The text will consist of a list of *.key files from the directory in
which Master Emulator is currently being run. In addition to the *.key files, any
folders at the current level are displayed in a separate list.

2.4. log

The log command has two optional parameters. The first is a filename and the
second is an access control. A filename without an extension will have the
extension “.log” appended. If no filename is specified then logging is turned off. If a
filename is specified, then any active logfile is closed and a new one is opened.
The access control can be either the letter ‘a’ or the letter ‘w’. If the specified

2505002 Revision 1.6 7 May 2006

9

filename exists, then the ‘a’ or ‘w’ tells Console Master Emulator whether to append
(‘a’) new information to the end of the existing file, or to overwrite (‘w’) the old data.
If the access control parameter is not specified then ‘a’ for append is the default.

In operation, the logfile records all commands going out and all traffic coming in.
For example to start logging to a file called test1.log use the following command:

log test1.log Then press Enter.

Typing log again without the filename will cause test1.log to be closed, and a
message printed saying logging has been turned off.

In the logfile all incoming packets begin with a colon (:) which is interpreted as a
comment. This allows a logfile to be "played"(See §2.5)

2.5. play

The play command takes a filename as a parameter. If the filename has no
extension then the extension “.scr” is appended. It runs the file as a script, exactly
as if it had been entered from the keyboard. Up to eleven open “play” files will be
maintained on a stack. If a play file contains a play command then input will come
from the new file and will return to the original file when end of file is reached. For
example to play a file called "count.scr", type the following command:

play count.scr Then press Enter.

The file "count.scr" will be opened, read and interpreted exactly as if the
characters had been entered from the keyboard. When the end of file is reached
input will return to the keyboard. If a file is to be played continuously then use a
replay command (See §2.6) with no parameter as the last line of the file.

To obtain a directory of script files, use a play command without a filename. Then,
press enter. The text will consist of a list of *.scr files from the directory in which
Console Master Emulator is currently being run. In addition to the *.scr files, any
folders at the current level are displayed in a separate list.

When input is being taken from a script file, or a key buffer, the dollar sign ($)
character may be used as a temporary keyboard escape. All keyboard input up to
the next return goes in place of the dollar sign in the currently executing script file or
key buffer. This may be used for example to program unique vendor serial numbers
into a DeviceNet node. A canned sequence of steps may be placed in a script file
to “unlock” the change serial number mechanism. At a strategic point the dollar sign

2505002 Revision 1.6 7 May 2006

10

($) could be placed in the script file, and the serial number could be entered. See
§4.4 for an example.

2.6. replay

The replay command takes an optional decimal parameter, which specifies the
number of times the file is to be read from the beginning. If the parameter is
missing it causes the file that is being read to loop continuously until the process is
aborted by pressing any key. The replay command must be placed at the end of
the actual test script itself. Here is a short example test script using the replay
command:

poll 01 00
delay 100
poll 02 00
delay 50
strobe 0 1 2 3 4 5 6 7
replay

In order for this script to produce a response, the predefined poll and strobe
connections on one of the slave devices on the network must have been allocated.
See §2.8.

If the example above should be performed ten times then the file would appear as
follows:

poll 01 00
delay 100
poll 02 00
delay 50
strobe 0 1 2 3 4 5 6 7
replay 10

2.7. delay

The delay command adds a delay in milliseconds when inserted into a sequence of
commands. For example to insert a delay of 150 milliseconds type the following:

delay 150 Then press Enter.

See the example program in §2.6.

Small delays on the order of several milliseconds may not be timed with extreme
accuracy, due to the processing delay of the script file interpretation.

2505002 Revision 1.6 7 May 2006

11

2.8. allocate

The allocate command is used to establish one or more of the connections in the
Predefined Master/Slave Connection Set (DeviceNet Specification Vol. I, Release
2.0, Chapter 7). The single parameter for the allocate command is a hexadecimal
encoded bit mask which is, described in the DeviceNet Specification Vol. I,
Release 2.0, p.5-57, and constructed as follows:

7 6 5 4 3 2 1 0
* NACK CYC COS MCP STB POLL EM

NACK Acknowledge Suppression
CYC Cyclic Connection
COS Change of State Connection
MCP Multicast Poll Connection
STB Bit Strobe Connection
POLL Poll Connection
EM Explicit Message Connection
* Reserved - should always be set to zero (0).

The available connections are an Explicit Messaging Connection, a Poll
Connection, a Bit-Strobe Connection, a Multicast Poll Connection, and a Change of
State/Cyclic Connection. To establish the connections between the Master and the
Slave, set the Slave's MAC ID with the slaveid command to that of the desired
Slave device. For example to open the various connections with device number 62
use the following sequence of commands:

slaveid 62 Then press Enter
allocate 1 To open an Explicit Messaging Connection
 OR
allocate 3 To open an Explicit Messaging and Poll
Connection
 OR
allocate 7 To open an Explicit Messaging, a Poll, and, a

Strobe Connection
allocate 50 To open a COS connection with Ack Suppression

* Note:
It is not possible to allocate just the I/O Connections without the Explicit Messaging
Connection. It is possible to allocate the desired connections and then release the
Explicit Messaging Connection.

2505002 Revision 1.6 7 May 2006

12

2.9. setepr

The setepr command sets the Expected Packet Rate (EPR) attribute (attribute # 9)
of a connection instance (Vol. 1 CIP Common Specification, Edition 2.0, Chapter 3,
pp. 28-29). This command takes two decimal arguments. The first is the
connection instance and the second is the EPR value. The units of the EPR value
are milliseconds. For the Predefined Master/Slave connection set, the connection
identifiers are as follows:

Connection
Instance Number

Connection
Type

1 Explicit Messaging
2 Poll Connection
3 Bit-Strobe Connection
4 COS/Cyclic Connection
5 Multicast Poll Connection

To set the EPR of the explicit messaging connection to 0 use the following:

setepr 1 0 Then press Enter.

To set the EPR of the poll connection to 100 milliseconds, use the following:

setepr 2 100 Then press Enter.

Setting the EPR of other Connection Instances is possible depending on the node’s
implementation.

2.10. poll

The poll command is used to send packets of data to the slave device using the
Master's Poll command [Group2, Destination MAC ID, MsgId 5]. The poll
command may send any amount of data to the destination slave device. If there are
more than eight bytes to send they will be sent as multiple I/O fragments. For
example to send the data bytes 0x55 and 0xE7 to a slave device type the following
command:

poll 55 E7 Then press Enter.

See §2.6 for an example program.

2505002 Revision 1.6 7 May 2006

13

2.11. mcpoll

The mcpoll command is used to send packets of date to a group of slave devices
using the Master’s Multicast Poll command. [Group 2, Multicast Maid, MsgId 1]. The
mcpoll command may send any amount of data to the destination slave device. If
there are more than eight bytes to send they will be sent as multiple I/O fragments.

The implementation of this command has not been extensively tested since after at
least five years of being defined in the specification there are no identifiable,
commercially available implementations of multicast poll.

2.12. strobe

The strobe command [Group2, Source Mac Id, MsgId 0] sends one bit of output
data to each allocated slave, using the Master's Bit Strobe Command Message.
The message length is normally eight bytes and each allocated slave device is
assigned one bit out of the sixty-four, corresponding to its MAC ID, to be used as it
wishes. Each allocated slave device receiving a bit strobe from its master
produces a bit strobe response. Console Master Emulator also supports the use of
the zero length strobe. In this case, just the command with no data is entered.

Example #1

Send a strobe bit of 1 to device 60 and zero to the rest.

strobe 0 0 0 0 0 0 0 10 Then press Enter.

To send a zero length strobe to the slaves allocated to the Master Emulator, type the
following:

strobe Then press Enter.

By definition, neither the strobe request, nor the strobe response can be
fragmented.

2.13. release

The release command informs the Slave that it is no longer under the Master's
control. The parameter to the release is a hexadecimal encoded bit mask, which
follows the same format as for the allocate command.

7 6 5 4 3 2 1 0
* * CYC COS MCP STB POLL EM

2505002 Revision 1.6 7 May 2006

14

CYC Cyclic Connection
COS Change of State Connection
MCP Multicast Poll Connection
STB Bit Strobe Connection
POLL Poll Connection
EM Explicit Message Connection
* Reserved - should always be set to zero (0).

To release a connection, type:

release 1 To release the Explicit Messaging
Connection
release 2 To release the Poll Connection
release 4 To release the Bit Strobe Connection
release 8 To release the Multicast Poll Connection
release 10 To release the COS connection
release 20 To release the Cyclic Connection
release 1F To release the COS and all other
Connections
release 2F To release the CYCLIC and all other

Connections

2.14. slaveid

The slaveid command takes a decimal number in the range [0..63] and establishes
an internal value to be used by the commands allocate, setepr, release, poll,
mcpoll, strobe, get, set, cosack, open, and close. For example to set the Slave
MAC ID to 57 type the following:

slaveid 57 Then press Enter.

Once set, the slaveid remains in effect until it is changed. The default value is sixty-
three (63).

2.15. masterid

The masterid command takes a decimal number in the range [0..63] and
establishes an internal value to use in the commands allocate, setepr, release,
poll, mcpoll, strobe, get, set, cosack, open, and close for the master's MAC ID.
For example to set the master's MAC ID to 1 use the following command:

masterid 1 Then press Enter.

2505002 Revision 1.6 7 May 2006

15

Once set, the masterid remains in effect until it is changed. The default value is one
(1).

2.16. multicastid

The multicastid command takes a decimal number in the range [0..63] and
establishes an internal value to use with the mcpoll command. To set the multicast
MAC ID to 11, type the following:

multicastid 11 Then press Enter.

Once set the multicastid remains in effect until it is changed. The default value is
one (1), which corresponds to the default masterid.

2.17. baudrate

The baudrate command sets the baudrate to one of the three values allowed by
DeviceNet. To change the baudrate type the following:

baudrate 125 to set the baudrate to 125 Kbaud.
baudrate 250 to set the baudrate to 250 Kbaud.
baudrate 500 to set the baudrate to 500 Kbaud.

On a network which is running this change may upset any nodes which do not track
this change including forcing them or the DeviceGate module to a Bus Off
condition.

2.18. fragackid

The fragackid command is used to tell Console Master Emulator what identifier to
use when acknowledging a fragmented response. This response would be from an
explicit message request. For Explicit Messaging Connections, which do not use
the predefined Master Slave Connection Set, failure to specify this parameter
before receiving a fragmented response may cause the slave device to hang up.
For example to tell Console Master Emulator to use identifier 0x601 to
acknowledge fragmented responses, type the following:

fragackid 601

The default value of fragackid is derived from the value of slaveid (60 for example)
and is computed as follows:

#define GROUP2 (2<<9)

2505002 Revision 1.6 7 May 2006

16

#define EXP_REQ 4
#define EXP_RSP 3

fragackid = GROUP2 + (slaveid <<3) + EXP_REQ ;
 = (0x400) + (0x1E0) + (0x004) ;
 = 0x5E4 ;

That is, fragackid is a group 2 Explicit Request with the slave MAC ID shifted left
three places. If this command is given with no parameter then the current value is
displayed.

2.19. fragokid

The fragokid command is used to tell Console Master Emulator which message
identifiers to check for the fragmentation bit being set. For Explicit Messaging
Connections, which do not use the predefined Master Slave Connection Set, failure
to set this parameter may cause erroneous behavior when fragmented messages
come in. To set the fragokid to 0x606, type the following:

fragokid 606

The default value of fragokid is derived from the value of slaveid (60 for example)
and is computed as follows:

#define GROUP2 (2<<9)
#define EXP_REQ 4
#define EXP_RSP 3

fragokid = GROUP2 + (slaveid <<3) + EXP_RSP
 = (0x400) + (0x1E0) + (0x003) ;
 = 0x5E3 ;

That is fragokid is a group 2 Explicit Response with the slave MAC ID shifted left
three places. If this command is given with no parameter then the current value is
displayed.

2.20. class

The class command, followed by a hexadecimal parameter, is used to select a
DeviceNet Class Identifier for a subsequent get (attribute single), set (attribute
single), or reset commands. Once a value is assigned to class it retains that value
until the next class command is encountered. The value defaults to 1 (Identity
Class) when DN-CMEM is invoked. A message is displayed confirming the current

2505002 Revision 1.6 7 May 2006

17

value of class. If no parameter is given then the present value is displayed. The
class parameter is entered and displayed in hexadecimal to be consistent with the
DeviceNet specification. Instance and attribute numbers are documented in
the CIP specification in decimal.

2.21. instance

The instance command followed by a decimal parameter is used to select an
instance of a class for a subsequent get, set, or reset command. Once instance
is assigned a value it retains that value until the next instance command. The value
defaults to 1 (First Instance) of a class when DN-CMEM is invoked. A message is
displayed confirming the current value of instance. If no parameter is given then the
present value is displayed. The instance parameter is entered and displayed in
decimal to be consistent with the usage in the DeviceNet specification. Instance
may be set to 0 to refer to the separate list of attributes belonging to the class as a
whole.

2.22. get

The get command followed by a decimal parameter is used to send a get attribute
single service to the slave device over the explicit messaging connection. This
command uses the information provided by slaveid, masterid, class, instance,
bodyformat and the parameter to the get command to construct the message. As
an example suppose we want to get the vendor identification from a device. In
Chapter 5 of the CIP Common Specification we see that Vendor ID is attribute 1 of
instance 1 of the Identity Class. Let us suppose that we have as MACID #1
(masterid 1) established a connection to MACID #63 (slaveid 63) and we enter the
command:

get 1

The transmitted message will be constructed as follows:

#define GROUP2 2
#define EXP_REQ 4
#define GET_ATTRIBUTE_SINGLE 14

• Identifier = (GROUP2<<9) + ((slaveid) <<3)+ EXP_REQ ;
• = (0x400) + (0x1F8) + (0x004) ;
• = 0x5FC ;
• DATA[0] = masterid ; // Frag = 0, and Xid = 0
• = 0x01 ;

2505002 Revision 1.6 7 May 2006

18

• DATA[1] = GET_ATTRIBUTE_SINGLE ;
• = 0x0E ;
• DATA[2] = class ; //default = 1
• = 0x01 ;
• DATA[3] = instance ; //default = 1
• = 0x01 ;
• DATA[4] = attribute // parameter of get command
• = 0x01

Using the syntax for a general-purpose message, the above lines would cause the
following message to be sent:

 [5FC] <01 0E 01 01 01>

The response from the slave would show up on the next line and look something
like:

 [5FB] <01 8E 14 00>

This would identify the vendor of the slave device as Huron Net Works!

2.23. set

The set command is the compliment of the get. The first parameter is in decimal
and is the attribute number of the class and instance that is to be set. After the
attribute number comes one or more bytes of attribute value. While maybe not the
most convenient for word or longer attributes it is simple and general. Note that
word parameters are specified in little-endian format with the low order byte coming
first. If we do a set 1 without changing anything from the above example we should
get an error message since Vendor is not a settable attribute of the Identity Class.
The coding would be the same as the example above except the
GET_ATTRIBUTE_SINGLE would be replaced by a SET_ATTRIBUTE_SINGLE
(0x10) and two data bytes would be added as DATA[5] and DATA[6].

2.24. chain

The chain command takes a filename as a parameter. This command preserves
the functionality of the play command (See §2.5) from DMEM Version 1.08 and
earlier. Any file being read for commands is closed. The file specified in the
parameter is opened and input continues from the beginning of the new file. See
§2.5 on play for the new description of its functionality. To obtain a directory of
script files, type “chain”, without a filename, then, press enter. The text will consist of

2505002 Revision 1.6 7 May 2006

19

a list of *.scr files from the directory in which Master Emulator is currently being run.
In addition to the *.scr files, any folders at the current level are displayed in a
separate list.

2.25. mask

The mask command takes up to four (4) hexadecimal arguments. These four bytes
map to the Acceptance Mask Registers of the SJA-1000 CAN Chip. The
Acceptance Mask Registers in conjunction with Acceptance Code Registers form a
pair of hardware screeners. These hardware screeners in the SJA-1000 CAN chip
on the DeviceGate can be programmed to accept certain messages and ignore all
other traffic on the network. In constructing the mask values place a zero (0) in each
position that is significant for determining whether a message is to be accepted.
Place a one (1) in each position which is a "don't care". This command will not
take effect until the next occurrence of the baudrate command. If the same
baudrate, which is in effect, is used then the new values of mask and match will
take effect and the baudrate will remain unchanged.

Both hardware screeners in the SJA-1000 CAN Controller chip are active. The first
one operates on the eleven-bit identifier field, the RTR bit (always zero for
DeviceNet) and the first byte of the data field. The second screener works on the
eleven-bit identifier field and the RTR bit. Both screeners may be set to pass the
same frames if only one screener is required.

This command will redisplay the four bytes entered in a more convenient notation
which shows the eleven bit identifier mask, the RTR mask, and the data mask for
mask1, followed by the eleven bit identifier mask and the RTR mask for Mask2.
See the example in the following section.

2.26. match

The match command takes up to four (4) hexadecimal arguments. These four
bytes map to the Acceptance Code Registers of the SJA-1000 CAN Chip. The
Acceptance Code Registers in conjunction with the Acceptance Mask Registers
form a pair of hardware screeners. These hardware screeners in the SJA-1000 chip
on the DeviceGate can be programmed to accept certain messages and ignore all
other traffic on the network. In constructing the match values place a zero (0) in each
position that is to be a zero (0). Place a one (1) in each position which is to be a
one (1). For positions, which are “don’t care” according to the mask place either a
zero (0) or a one (1). This command will not take effect until the next occurrence of
the baudrate command. If the same baudrate, which is in effect, is used then the
new values of mask and match will take effect and the baudrate will remain
unchanged.

2505002 Revision 1.6 7 May 2006

20

Both hardware screeners in the SJA-1000 CAN Controller chip are active. The first
one operates on the eleven-bit identifier field, the RTR bit (always zero for
DeviceNet) and the first byte of the data field. The second screener works on the
eleven-bit identifier field and the RTR bit. Both screeners may be set to pass the
same frames if only one screener is required.

This command will redisplay the four bytes entered in a more convenient notation
which shows the eleven bit identifier match, the RTR match, and the data match for
match1, followed by the eleven bit match and the RTR match for Match2.

Mask & Match Example #1

Suppose that we want to monitor only the poll responses from a particular
slave node (Node 60), with the data byte equal to 0x3X with the first
screener, and suppose we want to monitor all UCMM messages with the
second screener. See Appendix B for the details of the mapping of
Acceptance Mask and Acceptance Code bit onto the bits of a CAN Frame.
We construct the screener mask & match conditions as
follows:

Screener #1

ID BIT 10 = 0 Group 1 Message
ID BITS 9-6 = 1111 PollResponse Message ID
ID BITS 5-0 = 111100 MAC ID 60
RTR BIT = 0
DATA BITS 7-4 = 0011
DATA BITS 3-0 = XXXX

Screener #2

ID BITS 10-9 = 11 Group 3 Message
ID BITS 8-6 = 11X UCMM Request/Response
ID BITS 5-0 = XXXXXX Any Source Maid
RTR BIT = 0

From the values for the screeners we construct the
register contents as follows.

mask 00 00 0F EF
CDMEM: Mask1 = 0x000,0;0x0F
CDMEM: Mask2 = 0x07F,0;--

match 7F 83 F0 00
CDMEM: Match1 = 0x3FC,0;0x30
CDMEM: Match2 = 0x780,0;--

2505002 Revision 1.6 7 May 2006

21

baudrate 125

The default for mask is all ones, which lets everything through, and the default match
is all zeros.

2.27. reset

The reset command uses the internal variables class and instance to build an
explicit message whose service code is a reset service (0x05). As with other
explicit messages the internal variables slaveid, masterid, and bodyformat are
used to construct the identifier, the message header, and the message body. Not
all objects support a reset service, so error responses are to be expected in many
cases. Two DeviceNet objects, which typically support the reset service, are the
identity object and the connection object.

2.28. cosack

The cosack command will take up to eight hexadecimal parameters and save this
data. When a COS message arrives from the slaveid device DN-CMEM will build a
Change of State/Cyclic Acknowledge Message. This is a group 2 message with
destination (slaveid) MAC address and message ID two (2). It operates the same
as a poll except for the change of message ID. In most cases the COS
Acknowledge message should have no data and this is the default condition.

2.29. open

The open command takes three decimal parameters, and constructs a UCMM
Open Explicit Request Message. This message is a group 3 message, with a
message ID of six (6), and the Source MAC ID (masterid). The three parameters
are the requested body format, the group select, and the source message id in that
order. No error checking is done on the parameters so many possible
combinations will result in error responses or other unexpected conditions. Valid
ranges for each of the three parameters is [0..15]. The data field of the message
consists of the message header, the service code (0x4B), and the three parameters
packed into two bytes. See DeviceNet Specification Vol. I, Release 2.0, pp. 4-7
thru 4-10.

Example

Construct a UCMM Open, asking for DeviceNet 8/8, on Group 3 with
Message ID two (2).

open 0 3 2 Then press Enter

2505002 Revision 1.6 7 May 2006

22

The resulting message might look like

[781]<3F 4B 00 32>

Example

Construct a UCMM Open asking for DeviceNet 16/16, on Group 1 with
Message ID 10

open 2 1 10 Then press Enter

The resulting message might look like

[781]<7F 4B 02 1A>

The open command sets the value of an internal variable called ucmm to the value
one (1). It can be toggled between one (1) and zero (0) with the ucmm command.

2.30. close
The close command takes a decimal parameter, which is the instance number of
the connection to close. It constructs a UCMM Close Connection Request, which is
a group 3 message, with message ID six (6) and source MAC ID (masterid). The
data field consists of the message header, the service code (0x4C) and the
connection instance number. See the DeviceNet Specification Vol. I, Release 2.0,
pp. 4-17 thru 4-19.

Example

Close connection instance #3 on the slave device

close 3 Then press Enter

The resulting message might look like

[781]<3F 4C 03 00>

The internal variable ucmm is set to zero

2.31. bodyformat

The bodyformat command takes a decimal parameter which may be a in the
range zero (0) to three (3). The value is saved in an internal variable; it is then used
to construct Explicit Request Messages in any of the acceptable formats. The
following table shows the correspondence between the values of bodyformat and
the format of a corresponding Explicit Request.

2505002 Revision 1.6 7 May 2006

23

Value Meaning

0 DeviceNet(8/8) Class= 8 bits, Instance= 8 bits
1 DeviceNet(8/16) Class= 8 bits, Instance = 16 bits
2 DeviceNet(16/16) Class= 16 bits, Instance = 16 bits
3 DeviceNet(16/8) Class= 16 bits, Instance = 8 bits

2.32. ucmm

The ucmm command toggles an internal variable, which selects either the Group 2
predefined Explicit Request or the Explicit Request created by the UCMM. After
both a UCMM connection (see open) and the predefined Explicit (see allocate)
have been created, this toggle will allow a choice of which method to use. If using
the UCMM Explicit Connection make sure to set the fragackok, and fragidok
variables.

2.33. offline

The offline command constructs and sends an Offline Ownership Request
Message. The data field may contain up to eight arbitrary data bytes. There should
be no response to this message unless another master on the network has already
claimed ownership of the offline connection set.

2.34. fault

The fault command constructs and sends a Communication Faulted Request
Message. The data field may contain up to eight arbitrary data bytes. There may or
may not be responses to these messages depending on the presence or absence
of faulted nodes on a given network.

One form of the Communication Faulted Request Message is used to change the
MAC ID of a faulted node without doing a power cycle on the node.

2.35. claim

The claim command takes one or more node addresses separated by spaces and
adds them to a list of nodes for which Console Master Emulator will be responsible
for acknowledging COS and Cyclic production, and acknowledging fragmented
explicit production. This responsibility is a great deal less than full mastership but

2505002 Revision 1.6 7 May 2006

24

does avoid having to set this process up manually. By default Console Master
Emulator will take responsibility for the default Slave MAC ID which is 63.

Input arguments greater than 63 are ignored. The present masterid value cannot
be claimed, and is ignored. The node being claimed must either have no owner or
be owned by the present master. All other values are ignored.

The final result of the claiming process is that a table of identifiers is produced
which trigger appropriate productions when those identifiers are consumed.
Normally these identifiers are from the predefined connection set. When using a
ucmm created explicit connection make sure that fragackid and fragokid are set
correctly for a node before it is claimed.

2.36. disown

The disown command takes one or more node addresses and deletes them from
the list of nodes for which Console Master Emulator will acknowledge COS and
Cyclic productions and fragmented explicit productions. For Console Master
Emulator to be a true monitor all nodes should be disowned, or the masterid should
be changed to an address, which is not responsible for acknowledgement.

Input arguments greater than 63 are ignored. The present masterid value cannot
be claimed and is ignored. To disown a node the present master must have
previously claimed it. All other values are ignored.

Be careful about disowning a node and expecting proper behavior when it produces
a COS/Cyclic message or an explicit fragmented response.

2.37. dupmac

The dupmac command takes zero to eight bytes of hexadecimal data. The first
data byte is a node address. The remaining seven bytes are the contents of a
dupmac message. Unspecified bytes are set to zero. Sending a Dup Mac Check
Request to node #1 would look like

dupmac 1
[40F]<00 00 00 00 00 00 00>

Sending a Dup Mac Check Response to node #1 would look like

dupmac 1 80
[40F]<80 00 00 00 00 00 00>

2505002 Revision 1.6 7 May 2006

25

Finally sending a Dup Mac Check Request to node #1, port 0, Vendor Id 20 and
Serial Number 0x00007090 would look like

dupmac 1 00 14 00 90 70 00 00
[40F]<00 14 00 90 70 00 00>

2.38. monitor

The monitor command is used to change the mode of the CAN Controller from
normal mode to listen only mode. In listen only mode the CAN Controller on the
DeviceGate does not acknowledge received frames. In conjunction with the
baudrate command the listen only mode can be used to determine the baudrate of a
network. The procedure would be:

1. Start DN-CMEM with the DeviceGate powered, but disconnected from the
network.

2. Use the monitor command to go into listen only mode.
3. Attach the DeviceGate to the network.
4. if no messages are displayed, use the baudrate command to change

baudrates until received messages are displayed.
5. When the baudrate is established, use the monitor command again to exit

the listen only mode.

2.39. ascii

The ascii command is used to change the value of an internal variable which
controls the printing of the body of a CAN frame as an ASCII string. The default for
this variable is off. The ASCII string is enclosed in curly braces (“{…}”) after the
hexidecimal string and before the description of the frame. It may be necessary to
extend the line length in the terminal emulator to produce lines that do not wrap.
Non-printable characters are displayed as periods (“.”).

2.40. dir

The dir command is used to display a directory of all the files at the current level. In
addition each of the subfolders at the current level is displayed in a separate list.
This command takes an optional argument, with wildcards, which can be used to
display a restricted set of files. For example

dir *.exe

2505002 Revision 1.6 7 May 2006

26

might display the following lines.

 Directory of *.exe files
 CDMEM.EXE DAYTIME.EXE DNDRV.EXE

 Other Folders
 ZED SCR

and

dir
might display the following lines

 Directory of *.* files
 ERASE.SCR CDMEM.EXE WRITEFF.SCR SERIAL6E.SCR CHIP.INI
 DAYTIME.EXE ZED XX.SCR DNDRV.EXE XX.TXT
 CHIP.TST YY.SCR SCR

 Other Folders
 ZED SCR

2.41. cd

The cd command is used to change the current directory. There is a required
parameter which is the name of the subdirectory or folder that is to become the new
working directory. The shorthand names period “.” and double period “..” refer to the
current directory and the parent directory respectively. If the parameter is missing or
does not correspond to a subdirectory name then the error message is

CDMEM: Unable to go there

2.42. type

The type command is used to quickly view the contents of a text file. If the name
corresponds to a valid file then the file is opened and the contents are written to the
display. If the parameter is missing then a list of all files is displayed. Any
subfolders in the current directory are displayed in a separate list. For example, to
display the contents of the CHIP.INI file use the following:

type chip.ini
[IP]
DHCP=0
ADDRESS=192.168.2.87
NETMASK=255.255.255.0
GATEWAY=192.168.2.9

2505002 Revision 1.6 7 May 2006

27

[STDIO]
STDIN=COM EXT TELNET
STDOUT=COM EXT TELNET
[SERIAL]
EXT_BAUD=115200

2.43. read

The read command reads a small file into a key buffer. It takes two optional
parameters, a filename and a buffer number in the range [1..12]. If the buffer
number is omitted then the next free buffer is used. If both parameters are omitted
then a directory of all files is diplayed, and a separate list of subdirectories is
displayed. If the command is successfule then a message will be displayed with the
number of characters read and which of the key buffers they were placed in.

2.44. write
The write command writes a key buffer into a file. It takes two parameters, a buffer
number and a file name. If the file name is omitted there is an error message. If the
buffer number is omitted then the current buffer is written.

2505002 Revision 1.6 7 May 2006

28

3. FUNCTION KEYS

3.1. Terminal Emulators, Displays, and Keyboards

The original Master Emulator used console I/O to display information and accept
input from the keyboard. Programs running on the DeviceGate module do not have
access to a PC display and keyboard. This sort of input and output must come over
a serial port or over the Ethernet. Console Master Emulator uses a Terminal
Emulator running on a PC as the display, and keyboard devices.

A partial standard called “ANSI Escape Sequences” exists and provides some
foundation for creating screen-based applications to work in conjunction with so-
called “dumb terminals” or “glass teletypes”. There is no identifiable and consistent
standard for representing the function keys, or the editing keys on a PC keyboard in
terms of either escape sequences or characters on a serial port.

Console Master Emulator has therefore created a set of Escape Sequences and
Control Characters, which it understands and can map to various functions. For the
Function Keys, these sequences use the ESC key and the numbers along the top
row of the keyboard. The zero (0) stands for F10 (ESC 0), the minus stands for
F11, and the equal sign (=) for F12. The shifted versions of the function keys use
the ESC key and the back-tick (lower case tilde) followed by a number key along the
top row including minus and equal to stand for SHIFT-F1 through SHIFT-F12. The
tables in Appendices A-1 and A-2 show how the method extends to Control and Alt
Function Keys.

Terminal Emulator programs have a wide variety of methods and capabilities for
mapping keys on the keyboard to various sequences of characters. In the
discussion that follows any reference to a key on the standard PC keyboard shall be
understood to mean “that key” or an equivalent sequence of keys that maps to the
desired function.

This means that if you can program or configure a terminal emulator to map
keyboard keys into the standard DN-CMEM sequences, then you can avoid learning
a new technique for using function keys and editing keys.

3.2. Use of Function Keys

Function Keys are used to store common sequences of commands and messages
in a single memory buffer. Then, pressing a single key the entire sequence is
executed. For example, instead of typing:

 allocate 7

2505002 Revision 1.6 7 May 2006

29

 setepr 1 0 This may all be stored in
 setepr 2 0 the Function Key F1.
 setepr 3 0

If, during debugging, the slave device needs to be reset, then connections may be
reestablished by pressing just the F1 key. Function Keys F1 through F12 may be
used, and may be edited, cleared, saved, and recalled.

3.3. Defining a Function Key

If a Function Key has no definition, then the first time it is pressed an editing screen
will appear and a definition may be entered. Once a key is defined subsequent
keystrokes will cause the definition to be replayed as if the characters had been
entered from the keyboard again. After a function key is defined, Shift-Fxx will allow
editing of the definition. Alt-Fxx will clear the buffer associated with that function key.
Ctrl-Fxx performs no function, however a message shows the key was processed.

To enter commands into a Function Key Buffer, just type, as if the commands were
being entered at the keyboard. Once the desired commands are entered, press the
ESC key twice, the Control-X key, or the F6 key, to exit the Function Key Editor.
You have now defined a Function Key.

Exiting the Function Key Editor with the F6 key is retained for historical purposes,
but its use for this purpose is discouraged. Use the more consistent double ESC,
or the convenient control-X.

3.4. Function Key Editor

The Function Key Editor consists of an editing area, a label line, a prompt line, and
a cursor information line. While in the Function Key Editor, the F1 through F5 keys
have the following functions.

Function Description
Key

F1 - Displays the contents of the next Function Key, increasing from
 F1 to F12 and wrapping around to F1 again.

F2 - Displays the contents of the previous Function Key, decreasing
 from F12 to F1 and wrapping around to F12 again.

F3 - Clears all data in the displayed Function Key buffer.

2505002 Revision 1.6 7 May 2006

30

F4 - Allows entry of a 12-character label for the Function Key.

F5 - Used to reformat lines longer than 80 characters read in from a file, fit
the 80 characters per line length of the display. This function is
seldom necessary when using terminal emulators with a virtual screen
size

2505002 Revision 1.6 7 May 2006

31

4. APPLICATION HINTS

4.1. Allocating Connections

To debug various kinds of messages and objects on a slave device it is necessary
to establish at least an Explicit Messaging Connection. Since each connection has
associated with it an expected packet rate (EPR) which causes the connection to
time out after four (4) times the EPR has elapsed with no message; it is useful to set
the EPRs of all connections to zero. This can be accomplished with either a
function key definition or a script file with the following information:

masterid 1
slaveid 60
allocate 7
setepr 1 0
setepr 2 0
setepr 3 0

If this is assigned to a function key buffer and saved then it can be used to establish
the connections after resetting the slave device.

4.2. Simple Scanner

The functions of a simple scanner (MACID = 1) with two slave devices (MAC IDs 52
and 54) can be implemented with one function key definition and one script file.

The function key definition would look like:

masterid 1
slaveid 52
allocate 3
setepr 1 0
setepr 2 50
slaveid 54
allocate 3
setepr 1 0
setepr 2 50

The script file would look like

slaveid 52
poll 07 03 05 09

2505002 Revision 1.6 7 May 2006

32

slaveid 54
poll 08 04 06 0A
replay

After executing the function key once and receiving a success response to the
allocate and set EPR messages, type "play" and the name of the script file to start
a continuous scan of the two slave devices.

4.3. Nested Play Files

One of the uses of Console Master Emulator is automating a checkout procedure.
Each DeviceNet device is required to implement certain object classes. To get the
value of each attribute of each object class and to verify that illegal values produce
the expected error response a sequence of nested play files may be created. In the
following scripts the notation (eof) represents the end of file. It should not be placed
literally in the file.

The top-level play file called getall.scr might look like the following:

getall.scr
Do the Identity Object
play idobj.scr
Do the DeviceNet Object
play dnetobj.scr
Do the predefined connection objects
class 5
instance 1
play cnxn.scr
instance 2
play cnxn.scr
instance 3
play cnxn.scr
(eof)

The file idobj.scr might look like the following:

idobj.scr
class 1
instance 1
get 1
get 2
get 3
...
get 7
Verify error on attribute #8

2505002 Revision 1.6 7 May 2006

33

get 8
(eof)

The file dnetobj.scr might look like the following

dnetobj.scr
class 3
instance 1
get 1
get 2
get 3
get 4
get 5
Verify error on attribute #6
get 6
(eof)

The file cnxn.scr might look like the following:

cnxn.scr
get 1
get 2
...
Verify errors on attribute #10 and #11 per DeviceNet
Spec. Vol. I, Rev 2.0, p5-7
get 10
get 11
...
get 16
(eof)

The whole process is invoked from the keyboard by entering the command

 play getall.scr Then press return

If a record of the transactions is required a log command may be inserted at
strategic points.

2505002 Revision 1.6 7 May 2006

34

4.4. Keyboard Escape

In this example we presume that a group of slave devices need to be given their
serial numbers to be stored in some non-volatile memory. We further assume that
some sequence of DeviceNet explicit messages is used to provide an unlock
mechanism for programming the serial number. We want to construct a play file that
will automate the procedure. In this example the masterid is 1 and the slaveid is
63. Also the Function Key F1 is presumed to contain an allocate command and the
appropriate setepr commands. To unlock the serial number we must do a series of
get commands to various classes, instances, and attributes: followed by a set to the
serial number attribute of the identity object. An example script might look like the
following:

serial.scr
Unlock the set serial number lock
class 20
instance 45
get 7
get 100
get 1

set the serial number
Must be a fragmented request
Enter four hexadecimal bytes in place of the dollar
sign ($)

[5E4]<81 00 10 01 01 06 $>
(eof)

The $ will interrupt the processing flow and allow the parameters of the set
command to be entered from the keyboard replacing the $. The keyboard escape
now works from a Function Key Buffer as well as from a script file.

2505002 Revision 1.6 7 May 2006

35

APPENDIX A.1
DN-CMEM -- Control Key Mapping

Code Key Token Comment

0 ^@ I Illegal
1 ^A I Illegal
2 ^B END END or “BOTTOM”
3 ^C I Illegal
4 ^D PGDN Page Dn or “DOWN”
5 ^E END END or “END”
6 ^F I Illegal – OS Change FOCUS
7 ^G I Illegal
8 ^H BS Backspace
9 ^I TAB Tab

10 ^J EOL End of Line – linefeed or newline
11 ^K I Illegal
12 ^L I Illegal – if we echo this the screen is cleared
13 ^M EOL End of Line – Carriage Return
14 ^N I Illegal
15 ^O I Illegal
16 ^P I Illegal
17 ^Q XON Keyboard Input overlaps Display Output
18 ^R I Illegal
19 ^S XOFF Keyboard Input echo delayed until End of Line
20 ^T HOME HOME or “TOP”
21 ^U PGUP Page Up or “UP”
22 ^V I Illegal
23 ^W I Illegal
24 ^X EXIT EXIT Editor or DN-CMEM
25 ^Y I Illegal
26 ^Z I Illegal
27 ^[ESC Escape Key
28 ^\ DEL DEL – replaces Delete Key
29 ^] I Illegal
30 ^^ INS INS – replaces the Insert Key
31 ^_ I Illegal

Token is related to the function performed internally by DN-CMEM. These control
characters can be used with terminal emulators that have no capability to map
editing keys on the PC keyboard

2505002 Revision 1.6 7 May 2006

36

APPENDIX A.2
DN-CMEM – Edit/Function Key Mapping

Escape
Sequence

Key Comment

ESC [EP1 Escape Prefix 1 – ANSI Sequences
ESC O EP2 Escape Prefix 2 – ANSI Sequences
ESC ` EP3 Escape Prefix 3 – DN-CMEM Function Keys
ESC [A UP Cursor Up One Line
ESC [B DOWN Cursor Down One Line
ESC [C RIGHT Cursor Right One Character
ESC [D LEFT Cursor Left One Character
ESC [H HOME The Home Key
ESC [K END The End Key
ESC O P F1 HyperTerm’s default F1 Key
ESC O Q F2 HyperTerm’s default F2 Key
ESC O R F3 HyperTerm’s default F3 Key
ESC O S F4 HyperTerms default F4 Key
ESC 1 F1 DN-CMEM Definition
ESC 2 F2 DN-CMEM Definition
ESC 3 F3 DN-CMEM Definition
ESC 4 F4 DN-CMEM Definition
ESC 5 F5 DN-CMEM Definition
ESC 6 F6 DN-CMEM Definition
ESC 7 F7 DN-CMEM Definition
ESC 8 F8 DN-CMEM Definition
ESC 9 F9 DN-CMEM Definition
ESC 0 F10 DN-CMEM Definition
ESC - F11 DN-CMEM Definition
ESC = F12 DN-CMEM Definition
ESC ` 1 SF1 Shift-F1, DN-CMEM Definition
ESC ` 2 SF2 Shift-F2, DN-CMEM Definition
ESC ` 3 SF3 Shift-F3, DN-CMEM Definition
ESC ` 4 SF4 Shift-F4, DN-CMEM Definition
ESC ` 5 SF5 Shift-F5, DN-CMEM Definition
ESC ` 6 SF6 Shift-F6, DN-CMEM Definition
ESC ` 7 SF7 Shift-F7, DN-CMEM Definition
ESC ` 8 SF8 Shift-F8, DN-CMEM Definition
ESC ` 9 SF9 Shift-F9, DN-CMEM Definition
ESC ` 0 SF10 Shift-F10, DN-CMEM Definition
ESC ` - SF11 Shift-F11, DN-CMEM Definition
ESC ` = SF12 Shift-F12, DN-CMEM Definition

2505002 Revision 1.6 7 May 2006

37

Escape
Sequence

Key Comment

ESC ` q CF1 Control-F1< DN-CMEM Definition
ESC ` w CF2 Control-F2, DN-CMEM Definition
ESC ` e CF3 Control-F3, DN-CMEM Definition
ESC ` r CF4 Control-F4, DN-CMEM Definition
ESC ` t CF5 Control-F5, DN-CMEM Definition
ESC ` y CF6 Control-F6, DN-CMEM Definition
ESC ` u CF7 Control-F7, DN-CMEM Definition
ESC ` i CF8 Control-F8, DN-CMEM Definition
ESC ` o CF9 Control-F9, DN-CMEM Definition
ESC ` p CF10 Control-F10, DN-CMEM Definition
ESC ` [CF11 Control-F11, DN-CMEM Definition
ESC `] CF12 Control-F12, DN-CMEM Definition
ESC ` a AF1 Alt-F1, DN-CMEM Definition
ESC ` s AF2 Alt-F2, DN-CMEM Definition
ESC ` d AF3 Alt-F3, DN-CMEM Definition
ESC ` f AF4 Alt-F4, DN-CMEM Definition
ESC ` g AF5 Alt-F5, DN-CMEM Definition
ESC ` h AF6 Alt-F6, DN-CMEM Definition
ESC ` j AF7 Alt-F7, DN-CMEM Definition
ESC ` k AF8 Alt-F8, DN-CMEM Definition
ESC ` l AF9 Alt-F9, DN-CMEM Definition
ESC ` ; AF10 Alt-F10, DN-CMEM Definition
ESC ` ‘ AF11 Alt-F11, DN-CMEM Definition
ESC ` \ AF12 Alt-F12, DN-CMEM Definition

2505002 Revision 1.6 7 May 2006

38

APPENDIX B
SJA-1000 Mask & Match Register Bit Mapping

CAN Message

Bit
Mask1 Bit Match1 Bit Mask2 Bit Match2 Bit

ID.10 AMR0.7 ACR0.7 AMR2.7 ACR2.7
ID.9 AMR0.6 ACR0.6 AMR2.6 ACR2.6
ID.8 AMR0.5 ACR0.5 AMR2.5 ACR2.5
ID.7 AMR0.4 ACR0.4 AMR2.4 ACR2.4
ID.6 AMR0.3 ACR0.3 AMR2.3 ACR2.3
ID.5 AMR0.2 ACR0.2 AMR2.2 ACR2.2
ID.4 AMR0.1 ACR0.1 AME2.1 ACR2.1
ID.3 AMR0.0 ACR0.0 AMR2.0 ACR2.0
ID.2 AMR1.7 ACR1.7 AMR3.7 ACR3.7
ID.1 AMR1.6 ACR1.6 AMR3.6 ACR3.6
ID.0 AMR1.5 ACR1.5 AMR3.5 ACR3.5
RTR AMR1.4 ACR1.4 AMR3.4 ACR3.4
DATA0.7 AMR1.3 ACR1.3 - -
DATA0.6 AMR1.2 ACR1.2 - -
DATA0.5 AMR1.1 ACR1.1 - -
DATA0.4 AMR1.0 ACR1.0 - -
DATA0.3 AMR3.3 ACR3.3 - -
DATA0.2 AMR3.2 ACR3.2 - -
DATA0.1 AMR3.1 ACR3.1 - -
DATA0.0 AMR3.0 ACR3.0 - -

Mask and Match Command Mapping Example §2.26

mask 0x00 0x00 0x0F 0xEF
 AMR0 AMR1 AMR2 AMR3
match 0x7F 0x83 0xF0 0x00
 ACR0 ACR1 ACR2 ACR3

